Procesamiento de datos a la velocidad de la luz – «Transistor nano-excitónico»


Un equipo de investigadores de POSTECH y la Universidad ITMO ha desarrollado un «transistor nanoexcitónico» que aborda las limitaciones de los transistores existentes mediante el uso de excitones intracapa e intercapa en semiconductores basados ​​en heteroestructura.

¿Qué le permite a Ant-Man, un personaje de las películas de Marvel, generar una energía tan tremenda desde su pequeño cuerpo? La respuesta está en los transistores de su traje, que mejoran las señales débiles para su procesamiento. Los transistores tradicionales que amplifican las señales eléctricas a menudo desperdician energía térmica y ralentizan la transferencia de señales, lo que compromete el rendimiento. Sin embargo, ¿qué pasaría si fuera posible crear un traje de rendimiento que fuera liviano y compacto sin sacrificar la energía térmica?

Un equipo de investigadores de POSTECH, dirigido por el profesor Kyoung-Duck Park y Yeonjeong Koo del Departamento de Física, junto con un equipo de la Universidad ITMO de Rusia bajo la dirección del profesor Vasily Kravtsov, colaboraron para desarrollar un «transistor nanoexcitónico». ” Este innovador dispositivo utiliza excitones intracapa e intercapa en estructuras basadas en heteroestructuras.[{» attribute=»»>semiconductors, addressing the limitations present in traditional transistors.

Data Can Now Be Processed at the Speed of Light

Research image. Credit: POSTECH

“Excitons” are responsible for light emission of semiconductor materials and are key to developing a next-generation light-emitting element with less heat generation and a light source for quantum information technology due to the free conversion between light and material in their electrically neutral states. There are two types of excitons in a semiconductor heterobilayer, which is a stack of two different semiconductor monolayers: the intralayer excitons with horizontal direction and the interlayer excitons with vertical direction.

Optical signals emitted by the two excitons have different lights, durations, and coherence times. This means that selective control of the two optical signals could enable the development of a two-bit exciton transistor. However, it was challenging to control intra- and interlayer excitons in nano-scale spaces due to the non-homogeneity of semiconductor heterostructures and low luminous efficiency of interlayer excitons in addition to the diffraction limit of light.

Hyeongwoo Lee, Professor Kyoung Duck Park, and Yeonjeong Koo

From left: Hyeongwoo Lee, Professor Kyoung-Duck Park, and Yeonjeong Koo. Credit: POSTECH

The team in its previous research had proposed technology for controlling excitons in nano-level spaces by pressing semiconductor materials with a nano-scale tip. This time, for the first time ever, the researchers were able to remotely control the density and luminance efficiency of excitons based on polarized light on the tip without directly touching the excitons. The most significant advantage of this method, which combines a photonic nanocavity and a spatial light modulator, is that it can reversibly control excitons, minimizing physical damage to the semiconductor material. Also, the nano-excitonic transistor that utilizes “light” can help process massive amounts of data at the speed of light while minimizing heat energy loss.

Artificial intelligence (AI) has made inroads into our lives more quickly than we ever expected, and it requires huge volumes of data for learning in order to provide good answers that are actually helpful for users. The ever-increasing volume of information should be collected and processed as more and more fields utilize AI. This research is expected to propose a new data processing strategy befitting an era of data explosion. Yeonjeong Koo, one of the co-first authors of the research paper, said, “The nano-excitonic transistor is expected to play an integral role in realizing an optical computer, which will help process the huge amounts of data driven by AI technology.

Reference: “Nanocavity-Integrated van der Waals Heterobilayers for Nano-excitonic Transistor” by Yeonjeong Koo, Hyeongwoo Lee, Tatiana Ivanova, Roman S. Savelev, Mihail I. Petrov, Vasily Kravtsov and Kyoung-Duck Park, 1 March 2023, ACS Nano.
DOI: 10.1021/acsnano.2c11509

The study was funded by the Samsung Science and Technology Foundation and the National Research Foundation of Korea.

Artículos Recientes

Post Relacionados