Una imagen del milirobot de origami que puede moverse girando. Este robot espera para administrar un fármaco de alta concentración hasta que llega al objetivo, a diferencia de las píldoras que deben ingerirse o los líquidos que deben inyectarse. Crédito: Laboratorio Zhao
Pequeños robots podrían acercar la atención médica a la entrega de medicamentos de alta precisión
Probablemente ya sepa que los medicamentos no suelen estar diseñados para atacar áreas específicas de dolor si alguna vez ha tomado la misma píldora redonda para tratar de curar todo, desde dolores de cabeza hasta calambres estomacales. Si bien muchas enfermedades se han tratado con medicamentos de venta libre durante muchos años, los investigadores biomédicos han comenzado recientemente a buscar métodos para tratar de manera más efectiva afecciones médicas más complejas, como el cáncer o las enfermedades cardiovasculares, utilizando la administración dirigida de medicamentos.
El milirobot es un desarrollo potencial en este campo en desarrollo de la biomedicina. Con su capacidad para gatear, girar y nadar en espacios reducidos en su misión de explorar el funcionamiento interno o dispensar medicamentos, estos robots del tamaño de un dedo se convertirán en los futuros salvavidas de la medicina.
Renee Zhao, una ingeniera mecánica que dirige la investigación en esta área en la Universidad de Stanford, está desarrollando simultáneamente una serie de diseños de milirrobots, incluido un robot de rastreo magnético que se vio recientemente arrastrándose a través de un estómago en la portada de Avances científicos. Sus robots pueden autoseleccionar varios estados de la locomotora y cruzar obstáculos en el cuerpo porque están alimentados por campos magnéticos, que permiten el movimiento continuo y se pueden aplicar instantáneamente para producir un par. El equipo de Zhao descubrió una manera de impulsar un robot a través del cuerpo a distancias diez veces su longitud en un solo salto simplemente cambiando la dirección y la fuerza del campo magnético.
Un aspecto clave de su investigación, la actuación magnética también proporciona control autónomo para operaciones no invasivas y separa la unidad de control del dispositivo para permitir la miniaturización. Zhao dijo que su robot más nuevo, recientemente presentado en el periódico
Reshaping drug delivery
What’s groundbreaking about this particular amphibious robot, according to Zhao, is that it goes beyond the designs of most origami-based robots, which only utilize origami’s foldability to control how a robot morphs and moves.
On top of looking at how folding could enable the robot to perform certain actions – imagine an accordion fold that squeezes out medicine – Zhao’s team also considered how the dimensions of each fold’s exact shape influenced the robot’s rigid motion when it was not folded. As a result, the robot’s unfolded form inherently lends itself to propulsion through the environment. Such broad-minded considerations allowed the researchers to get more use out of the materials without adding bulk – and in Zhao’s world, the more functionality achieved from a single structure within the robot’s design, the less invasive the medical procedure is.
Another unique aspect of the design of the robot is the combination of certain geometrical features. A longitudinal hole into the robot’s center and lateral slits angled up the sides reduced water resistance and helped the robot swim better. “This design induces a negative pressure in the robot for fast swimming and meanwhile provides suction for cargo pickup and transportation,” Zhao said. “We take full advantage of the geometric features of this small robot and explore that single structure for different applications and for different functions.”
Based on conversations with Stanford Department of Medicine experts, the Zhao Lab is considering how to improve upon current treatments and procedures by building new technologies. If this work goes Zhao’s way, her robots won’t just provide a handy way to effectively dispense medicine but could also be used to carry instruments or cameras into the body, changing how doctors examine patients. The team is also working on using ultrasound imaging to track where robots go, eliminating any need to cut open organs.
The smaller, simpler, the better
While we won’t see millirobots like Zhao’s in real health care settings until more is known about optimal design and imaging best practices, the lab’s first-of-its-kind swimmer highlighted in Nature Communications is among their robots that are furthest along. It’s currently in the trial stages that come before any live animal testing that proceeds human clinical trials.
In the meantime, Zhao’s team continues combining a variety of novel smart materials and structures into unique designs that ultimately form new biomedical devices. She also plans to continue scaling down her robots to further biomedical research at the microscale.
As an engineer, Zhao strives to develop the simplest structures with the most functionality. Her amphibious robot exemplifies that mission, as it inspired her team to more fully consider geometric features not yet commonly prioritized by other origami robot researchers. “We started looking at how all these work in parallel,” Zhao said. “This is a very unique point of this work, and it also has broad potential application in the biomedical field.”
The study was funded by the National Science Foundation and the American Heart Association.
Reference: “Spinning-enabled wireless amphibious origami millirobot” by Qiji Ze, Shuai Wu, Jize Dai, Sophie Leanza, Gentaro Ikeda, Phillip C. Yang, Gianluca Iaccarino and Ruike Renee Zhao, 14 June 2022, Nature Communications.
DOI: 10.1038/s41467-022-30802-w