Combinación de dos técnicas ganadoras del Premio Nobel: una nueva tecnología de microchip


Impresión artística del sensor en forma de trampolín. El rayo láser que pasa por el centro de la membrana del trampolín crea vibraciones armónicas dentro del material. Crédito: Sciencebrush

Físicos de la Universidad Tecnológica de Delft han creado un microchip utilizando una combinación única de dos técnicas ganadoras del Premio Nobel, atrapamiento óptico y peines de frecuencia. Este microchip nuevo, simple y de bajo consumo utiliza vibraciones de sonido para medir distancias con alta precisión en materiales opacos, con aplicaciones potenciales en exploración submarina, imágenes médicas y monitoreo climático.

Físicos de la Universidad Tecnológica de Delft han desarrollado una nueva tecnología en un microchip al combinar por primera vez dos métodos ganadores del Premio Nobel. El microchip puede medir con precisión distancias en materiales, lo que podría tener aplicaciones en áreas como la medición subacuática y la obtención de imágenes médicas.

La nueva tecnología, que utiliza vibraciones de sonido en lugar de luz, podría ser útil para obtener mediciones de posición de alta precisión en materiales opacos. Este avance podría conducir al desarrollo de nuevos métodos para monitorear el clima de la Tierra y la salud humana. Los resultados fueron publicados en la revista

Unique combination

The new technology is based on two unrelated Nobel Prize-winning techniques, called optical trapping and frequency combs. Norte: “The interesting thing is that both of these concepts are typically related to light, but these fields do not have any real overlap. We have uniquely combined them to create an easy-to-use microchip technology based on sound waves. This ease of use could have significant implications for how we measure the world around us.”

Overtones

When the researchers pointed a laser beam at the tiny trampoline, they realized that the forces that the laser exerted on it were creating overtone vibrations in the trampoline membranes. “These forces are called an optical trap, because they can trap particles in one spot using light. This technique won the Nobel Prize in 2018 and it allows us to manipulate even the smallest particles with extreme precision,” Norte explains. “You can compare the overtones in the trampoline to particular notes of a violin. The note or frequency that the violin produces depends on where you place your finger on the string. If you touch the string only very lightly and play it with a bow, you can create overtones; a series of notes at higher frequencies. In our case, the laser acts as both the soft touch and the bow to induce overtone vibrations in the trampoline membrane.”

Bridging two breakthrough fields

“Optical frequency combs are used in labs around the world for very precise measurements of time, and to measure distances,” Norte says. “They are so important to measurements in general that their invention was given a Nobel Prize in 2005. We have made an acoustic version of a frequency comb, made out of sound vibrations in the membrane instead of light. Acoustic frequency combs could for instance make position measurements in opaque materials, through which vibrations can propagate better than light waves. This technology could for example be used for precision measurements underwater to monitor the Earth’s climate, for medical imaging, and for applications in quantum technologies.”

Reference: “Mechanical overtone frequency combs” by Matthijs H. J. de Jong, Adarsh Ganesan, Andrea Cupertino, Simon Gröblacher and Richard A. Norte, 16 March 2023, Nature Communications.
DOI: 10.1038/s41467-023-36953-8

Artículos Recientes

Post Relacionados